H&H Modeling & Surface Water Practice

Lunch & Learn

Matt Brosman, P.E., CFM

- B.S. University of Florida, 2013
- 4 years at KH Dallas
- 4 years at KH Ft. Lauderdale
- Practice area
 - Surface water modeling
 - Floodplain management
 - Stormwater master planning
 - Community resilience

Surface Water Modeling Partners AJacksonville Panama City Beach Tallahassee Gainesville Ocala Orlando Lakeland Tampa 👛 St. Petersburg Vero Beach Sarasota West Palm Beach Boca-Delray Fort Lauderdale Fort Myers 🔀 Miami

Hydrology & Hydraulics

"How does water enter and leave our environment?"

"How does water move through our environment?"

Typical Project Types

- Stormwater Due Diligence
- Site Stormwater Facility Design
- Water Quality Design & Monitoring
- FEMA Map Revisions
- Stormwater Master Planning
- Watershed Management Plans
- Community Vulnerability & Resiliency Assessments

Hydrologic & Hydraulic Modeling

Why do we need an H&H model?

- Predict flooding & protect the community
- Select & implement flood reduction projects
- Models juggle a lot!
 - Dozens of parameters
 - Hundreds of elements
 - Thousands of timesteps...
 - Computationally intense

What is ICPR?

- Interconnected Channel and Pond Routing Model
- Program used to model drainage on nearly any scale
- Most used H&H model in FL
- Model within a GIS-based
 environment

What is ICPR?

- Surface water in FL often moves between ponds as shown
- Connected via a series of pipes and control structures
- Stormwater quality & quantity control, velocity control, wetland mitigation, etc.
- Basins shown in red
- Flows $A \rightarrow E \rightarrow F \rightarrow G \rightarrow H...$

Typical Elements

- Nodes
 - Represent physical points where water collect
 - Inlets, manholes, ponds
- Links
 - Get water from one place to another
 - Pipes, channels, pumps, etc.
- Basins
 - Receive rainfall, hydrologic routine, generate runoff
 - Connected/applied to a node

Typical Elements

- Underlying Layers
 - Elevation
 - Land Cover
 - Soils
 - Groundwater
- Tabular Data
 - Boundary Stages
 - Rating Curves
 - Land Cover/Impervious
 properties

Example Applications

Tiny Scale – Drainage Well

- Small site discharges into a well box
- Well discharges approx. 150 feet below grade
- Rating curve defined by FDOT standards
- Ensure state water quality & quantity standards are met

Tiny Scale – Drainage Well

Small Scale – Exfiltration Trench

- Exfiltration trench link represents trench storage
- Percolation link allows water to slowly leave system
- Ensure site draws down sufficiently quickly
- Ensure site meets state water standards

Small Scale – Exfiltration Trench

Medium Scale – Commercial Site

- Commercial site with two ponds, discharge to
- Control structures hold back
 smaller storm events
- Comparison vs. predevelopment to ensure improvement
- Results establish minimum building, parking lot elevations

Medium Scale – Commercial Site

Large Scale – Solar Energy

Large Scale – Solar Energy

- Photovoltaic Facility
- 74.5 MW, 300k panels, 15k homes
- Two-dimensional model to determine optimal rack location and pile heights
- Scour (erosion) considerations
- Overland sheet flow from array fields into canals

Larger Scale – Watershed Management Plan

- Watershed
 Management Plan
- Calibrated to Hurricane
 Irma
- Evaluation of watershed Level of Service (LOS)
- Evaluation of proposed projects

Watershed Management Plan Future Project Identification

- Identification & validation of problem areas
- Conceptual design scenario analyses
- Spatial prioritization
 and decision matrix

Even Larger Scale – Master Planned Communities

- 18,000+ acre property
- Stormwater system designed to mimic natural conditions
- Conceptual permitting with SFWMD
- Multiple FEMA flood map revisions

And Beyond...

<u>Let's connect!</u> linkedin.com/in/mattbrosman matt.brosman@kimley-horn.com