Florida Concrete Pipe Association

Safety & Cost Improvements When Specifying RCP Accordingly

January 11, 2022

Douglas Holdener, P.E.

Director

Florida Concrete Pipe Association

- **25** yrs. Civil Engineering Experience
 - □ Consultant (7 yrs)
 - □ Concrete Pipe Producer (12 yrs)
 - □ Florida Power & Light Contractor (1 yr)
 - □ Concrete Pipe Association (5 yrs)
- □ Texas A&M University (M.S. Civ. Eng.)
- Washington University in St. Louis (B.S. Civ. Eng.)

□ ASCE

- FL Report Card (Ports & Energy)
- □ Legislative Calls / Support
- Raised \$1,000s for Student Chapters

Jupiter Farms

Florida Concrete Pipe Association

21.5 Population of Florida

MILLION

Safety & Cost Improvements When Using Concrete Pipe*

□* When Specifying Accordingly and When Supported by Design Basis

□Improving Safety for Men & Women in Trenches

QReducing Construction / Backfill Schedule

□More Efficient Geotechnical / Density Testing

□More Judicious Use of Soil Materials / Transportation

□F.S 403.9302

Mentioned at Joint Societies Legislative Breakfast (Dec. 2021)
 20-Year Needs Analysis for Stormwater

20-Year Needs Analyses

- F.S. 403.9301 Wastewater
- F.S. 403.9302 Stormwater
- Originally H.B. 53
 - Sponsor: Rep. DiCeglie (Pinellas)
 - Co-Sponsors: Fischer (Duval); McClain (Marion); Overdorf (St. Lucie, Martin); and Roth (Palm Beach)
 - Initially: Procurement of Construction Services / Public Works
 - Late-April: Needs Analyses
 - June 29, '21 Approved by Governor DeSantis

CHAPTER 2021-194

Committee Substitute for Committee Substitute for Committee Substitute for House Bill No. 53

An act relating to public works; amending s. 255.0991, F.S.; revising a prohibition relating to any solicitation for construction services paid for with state appropriated funds; amending s. 255.0992, F.S.; revising the definition of the term "public works project"; prohibiting the state or any political subdivision that contracts for a public works project from taking specified action against certain persons that are engaged in a public works project or have submitted a bid for such a project; providing applicability; amending s. 403.928, F.S.; requiring the Office of Economic and Demographic Research to include an analysis of certain expenditures in its annual assessment; creating s. 403.9301, F.S.; providing definitions; requiring counties, municipalities, and special districts that provide wastewater services to develop a needs analysis that includes certain information by a specified date; requiring municipalities and special districts to submit such analyses to a certain county; requiring the county to file a compiled document with the coordinator of the Office of Economic and Demographic Research by a specified date; requiring the office to evaluate the document and include an analysis in its annual assessment; providing applicability; creating s. 403.9302, F.S.; providing definitions; requiring counties, municipalities, and special districts that provide stormwater management to develop a needs analysis that includes certain information by a specified date; requiring municipalities and special districts to submit such analyses to a certain county; requiring the county to file a compiled document with the Secretary of Environmental Protection and the coordinator of the Office of Economic and Demographic Research by a specified date; requiring the office to evaluate the document and include an analysis in its annual assessment; providing applicability; providing a determination and declaration of important state interest; providing an effective date.

Be It Enacted by the Legislature of the State of Florida:

Section 1. Subsection (2) of section 255.0991, Florida Statutes, is amended to read:

http://laws.flrules.org/2021/194http://laws.flrules.org/2021/194 Select Chapter 2021 – 194 Public Works.

http://edr.state.fl.us/Content/natural-resources/stormwaterwastewater.cfm

Stormwater & Wastewater 20-Year Needs Analyses

Sections 403.9301 and 403.9302, Florida Statutes, (see <u>Chapter 2021-194</u>, Laws of Florida), direct municipalities, counties, and independent special districts that provide a stormwater management system or program, or wastewater management services, to develop a 20-year needs analysis every five years.

For the first cycle of reports, local governments must submit their reports to their respective counties by June 30, 2022. The counties must compile the local reports (including their own) and submit them to EDR and the secretary of the Department of Environmental Protection by July 31, 2022. EDR will then publish an analysis of the stormwater and wastewater submissions in the 2023 edition of the Annual Assessments of Florida's Water Resources and Conservation Lands. The next reporting cycle will begin in 2027.

The templates are provided in two formats. First, a workbook has been developed in EXCEL that should be downloaded and completed for actual submission. The accompanying PDF's are text only, and are only provided for easy reference. Otherwise, the two documents match. County instructions for compiling all local submissions for final transfer to EDR will be coming soon. All questions should be directed to: <u>EDR Natural Resources</u>.

Note: municipalities and independent special districts report to county within largest portion of service area.

Stormwater (s. 403.9302, F.S.)

- Stormwater Template for Needs Analysis
 - EXCEL Workbook for Submission Marine October 8, 2021
 - Optional Growth Rate Schedules [xlsx]
 - PDF Version for Reference [pdf] revised October 8, 2021; replaces September 1, 2021 version
 - Stormwater Template Overview August 20, 2021
- FAQs Coming Soon
- Glossary Coming Soon

Wastewater (s. 403.9301, F.S.)

• Template - Coming Soon

Last Revised: November 5, 2021

http://edr.state.fl.us/Content/natural-resources/stormwaterwastewater.cfm

Template / Worksheets

Routine O & M Costs (20-Year Horizon)

□ Future Expansion Projects

Committed Funding Sources

□ Future Expansion Projects

□ No Funding Source

Stormwater Projects / Resiliency Related to Climate Change

Committed Funding

No Identified Funding

Est. Remaining Useful Life Projects

□ Focus on projects needing replacement within 20-Yr Horizon

http://edr.state.fl.us/Content/natural-resources/stormwaterwastewater.cfm

Part 6.0 The estimated remaining useful life of each facility or its major components (Section 403.9302(3)(e), F.S.)

Rather than reporting the exact number of useful years remaining for individual components, this section is constructed to focus on infrastructure components that are targeted for replacement and will be major expenses within the 20-year time horizon. Major replacements include culverts and pipe networks, control structures, pump stations, physical/biological filter media, *etc*. Further, the costs of retrofitting when used in lieu of replacement (such as slip lining) should be included in this part. Finally, for the purposes of this document, it is assumed that open storage and conveyance systems are maintained (as opposed to replaced) and have an unlimited service life.

In order to distinguish between routine maintenance projects and the replacement projects to be included in this part, only major expenses are included here. A major expense is defined as any single replacement project greater than 5% of the jurisdiction's total O&M expenditures over the most recent five-year period (such as a project in late 2021 costing more than 5% of the O&M expenditures for fiscal years 2016-2017 to 2020-2021).

If you have more than 5 projects in a particular category, please use the "Additional Projects" tab. There, you can use dropdown lists to choose the project category and whether there is a committed funding source, then enter the project name and expenditure amounts.

Europeditures (in Étheusende)

	EA)	Senaitares (in Stilo	usanusj	
LEV 2021 2022	2022-23 to	2027-28 to	2032-33 to	2037-38 to
LFT 2021-2022	2026-27	2031-32	2036-37	2041-42
	LFY 2021-2022	LFY 2021-2022 2022-23 to 2026-27	LFY 2021-2022 2022-23 to 2027-28 to 2031-32	LFY 2021-2022 2022-23 to 2026-27 2027-28 to 2031-32 2032-33 to 2036-37 Image: Constraint of the second

End of Useful Life Replacement Projects with a Committed Funding Source

End of Useful Life Replacement Projects with No Identified Funding Source

 Expenditures (in \$thousands)

 Project Name
 LFY 2021-2022
 2022-23 to 2026-27
 2027-28 to 2031-32
 2032-33 to 2036-37
 2037-38 to 2041-42

 Image: Image:

Official List of Special Districts

Home > Community Planning, Development and Services > Special Districts > Special District Accountability Program > Official List of Special Districts

Special District

Directory (www.FloridaJobs.org/OfficialList)

- 1. Explanations, Purposes, Data Accuracy and Categories
 - About the Official List of Special Districts
- 2. Links to Each Special District's Official Website
 - Special District Official Website Links
- 3. Create Your Own List by Selecting Variables of Interest
 - Create a Customized List of Special Districts
- 4. Quick Profiles Showing Contact and Other Information
 - Special District Profiles d' (Alphabetical List)

5. Multi-County Listings

- a. Multi-County Special Districts (Summary)
- b. Multi-County Special Districts (Detailed):

https://floridajobs.org/community-planning-and-development/specialdistricts/special-district-accountability-program/official-list-of-special-districts

http://specialdistrictreports.floridajobs.org/webreports/websitelist.aspx

CS/CS/CS/HB 53: Public Works Stormwater Needs Analysis		
June 24, 2021	Florida Legislature Office of Economic & Demographic Research	
 28:40	850-487-1402 edr.state.fl.us	

https://drive.google.com/file/d/1TMmyBGk-vUZdLEzIGMmyk6ltqvRxbgAm/view

Safety & Efficiency: How To Accomplish

- Less Time in Critical Work Zone (Trench)
 - Laborers, CEIs, Geotechnical
- **Reduce Construction Schedule**
 - □ Thicker Lifts above RCP Springline
- □ Efficient, Safer Use of CEI, Geotechnical Resources
 - **D** Focus Density Testing Where Most Important
 - Reduce In-Trench Tests as Appropriate
- Use More Economical Fill Materials and Reduce Trucking
 - In-situ Vs. Imported
 - □ Alternatives to A-3 soils
 - **Understanding of the role of soils in pipe embedment**
 - Still must have a design basis

ASCE's Pivotal Role in Concrete Pipe History Plus RCP's Link to Epcot by Douglas J. Holdener, P.E.

Director, Florida Concrete Pipe Association

founded in 1852.¹ Ten years prior to the formation of ASCE, in 1842, concrete pipe was installed for the first (e.g., III, IV, or V). time in the United States in Mohawk, New York. The 1842 Mohawk concrete pipe was cast in place for a The concept of "installation type" originated in the sanitary sewer application and remained in use and in excellent condition for over 140 years. In 1867, Joseph Monier, a French commercial gardener, patented wire reinforcement.² Monier showcased wire reinforcing at the Paris Exposition, and subsequently established more patents including production of reinforced concrete pipes in 1868.³ Precast reinforced concrete pipe (RCP) was first commercially produced in France in 1896 and was introduced in the U.S. in 1905.⁴ Since the early 1900s, reinforced concrete pipe (RCP) design, installation, and specifications have evolved, and the ASCE was significant in the development of modern RCP standards.

The American Society of Civil Engineers (ASCE) was and it is the basis for the Three-Edge Bearing (3EB) test that is used today for certification of RCP strength class

> early 1900s. For much of the 20th century, standard installation types for concrete pipe consisted of: (a) concrete cradle (Bedding Factor of 2.8 to 4.8); (b) shaped subgrades (Bedding Factor of 1.5 to 1.9; and (c) flat subgrade (Bedding Factor of 1.1). These early installation types were not the most practical nor economical for construction, however, these older installation details are occasionally still referenced in specifications that have not been updated to modern standards.

> In the 1960s, Massachusetts Institute of Technology (MIT) researcher Frank Heger adapted reinforced

ASCE STANDARD

ASCE/CI 15-17

> Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)

ASCE

Designation: C 1479 – 07a

Standard Practice for Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations¹

This standard is issued under the fixed designation C 1479; original adoption or, in the case of revision, the year of last r superscript epsilon (ε) indicates an editorial change since the

2017 LRFD Bridge Construction Specifications 4th Edition

Topic No. 625-040-002 Drainage Manual Effective: January 2021

Concrete Pipe - Round

Maximum Cover										
Round Pipe (B Wall)—Type I Installation										
	Maximum Cover (ft)									
Pipe Diameter	Class Class Class Class Class									
12"	11	16	22	34	45					
15"	12	16	23	34	45					
18"	12	16	23	35	45					
24"	11	16	22	34	45					

Concrete Pipe Structural Fundamentals

"<u>select granular materials</u> with <u>high compaction</u> in zones above the pipe springline does not improve the efficiency of pipe support. Materials in this zone usually may be of the same type and compaction as used for the earth fill over the pipe with no loss of pipe support."

ASCE Pipeline Infrastructure Conference Proceedings, Boston, MA, 1988.

Specification Efficiency #1: Thick Lifts Above RCP Springline

Reduce Time Spent in Critical Work Zones by up to 20%

RCP Embedment Parameters

- 12" backfill lifts above springline of concrete pipe
- Use of current allowed embedment soils
- Compaction 95% std. Proctor

Expected Benefits

- Safety: Reduce time in the trench – a Critical Work Zone
- Reduce overall construction schedule, less impact to traffic
- Reduced cost

12.06.01 - Compaction Tests

Compaction tests shall be required for each three hundred (300) linear feet of pipe as a minimum. The **County** Engineer may determine that more compaction tests are required to certify the installation depending on field conditions. The locations of compaction tests within the trench shall be in conformance with the following schedule:

- a. One test at the spring line of the pipe
- b. One test at an elevation one (1) foot above the pipe crown
- c. One test for each two (2) feet of backfill placed above one (1) foot above the pipe crown to subgrade elevation

12" THICK UNIFORM LIFTS COMPACTED TO A MINIMUM DENSITY OF 98% T-180, FROM TOP OF PIPE TO FINISHED GRADE OR BOTTOM OF BASE MATERIAL

25 Rigid Rugged Resilient

Thick Lift Above RCP Springline

- FDOT (pilot)
- Lake County (project specifications)
- Putnam County (project specifications)
- City of Tampa (design-build)
- Brevard County (standard)
- City of Tallahassee (standard)

Safety & Efficiency: How To Accomplish

- Less Time in Critical Work Zone (Trench)
 - Laborers, CEIs, Geotechnical
- **Reduce Construction Schedule**
 - Thicker Lifts above RCP Springline
- □ Efficient, Safer Use of CEI, Geotechnical Resources
 - **D** Focus Density Testing Where Most Important
 - Reduce In-Trench Tests as Appropriate
- Use More Economical Fill Materials and Reduce Trucking
 - In-situ Vs. Imported
 - □ Alternatives to A-3 soils
 - Understanding of the role of soils in pipe embedment
 - Still must have a design basis

Concrete Pipe Trench Detail

Concrete Pipe Installation Notes:

- 1. RCP shall be ASTM C76 Class III, unless otherwise shown in plans. Installation shall be per ASTM C1479 as modified herein.
- 2. Foundation shall be stiff to hard in-situ soil, stabilized soil, or compacted fill material.
- 3. Bedding thickness shall be D/24 inches, not less than 3 inches. Middle bedding directly beneath pipe shall be loosely placed, uncompacted embedment material.
- 4. Within roadways/traffic areas: Soil Envelope to springline shall be A-1, A-2, A-3, or A-4 material compacted to 95% std. Proctor density.
- 5. Outside of roadways: Soil Envelope to springline shall be constructed per ASTM C1479 Type 3 at minimum.
- 6. Above the springline, place concrete pipe embedment material in lifts of no more than 12 inches compacted thickness if using soil types A-3 or A-2-4 (No. 200 sieve ≤ 15%). For all other embedment material, if the contractor chooses to place concrete pipe embedment material in lifts greater than six inches but no more than 12 inches compacted thickness, then the contractor must demonstrate with a successful test section that density can be achieved.
- 7. Non-shrink grout shall be used at pipe-structure connections. Ensure placement of positive pipe bedding support.
- 8. Pipe damage or defect observations prior to install. shall be evaluated per AASHTO R73. If final CCTV inspection required, observations shall be reported and evaluated per ASTM C1840.

Specification Efficiency #2: Backfill Material Savings Above RCP Springline

Concrete Pipe Structural Fundamentals

"<u>select granular materials</u> with <u>high compaction</u> in zones above the pipe springline does not improve the efficiency of pipe support. Materials in this zone usually may be of the same type and compaction as used for the earth fill over the pipe with no loss of pipe support."

ASCE Pipeline Infrastructure Conference Proceedings, Boston, MA, 1988.

llustration o	of Reduced E	Backfill when Using Cor	ncrete Pipe		
RCP Diameter (inch)	Trench Width (ft) ^A	Excess Embedment Above <u>Springline</u> (ft) ^B	Reduced Select Backfill Above <u>Springline</u> per 100 Feet of Trench ^C	Reduced Select Backfill Costs \$ per 100 ft ^D	
15	4	1.625	650 ft ³	\$2,700 / 100 ft	
18	4	1.75	700 ft ³	\$2,900 / 100 ft	
24	5	2	1,000 ft ³	\$4,150 / 100 ft	
30	5	2.25	1,125 ft ³	\$4,670 / 100 ft	
36	6	2.5	1,500 ft ³	\$6,230 / 100 ft	
42	7	2.75	1,925 ft ³	\$8,000 / 100 ft	
48	7	3	2,100 ft ³	\$8,720 / 100 ft	

A. RCP trench width based on AASHTO requirement of D + 24 inches, rounded to the nearest foot.

- B. Excess embedment above springline to one foot above pipe crown.
- C. Excess structural embedment represents select fill material that contributes negligibly to concrete pipe stresses and could be replaced with more efficient materials.
- D. Pay Item Avg. Unit Cost, 04/01/2021 09/30/2021, Pay Item 125 3 Select Backfill, \$112.57 per CY, Florida Department of Transportation Program Management Office.

Specification Efficiency #3: Alternative Embedment Installations

Fill Height Tables are based on:

1. γs = 120 pcf

2. AASHTO HL-93 live load

14

3. Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

						Fill Heig	jht in Fee	t						
Pipe Size (in)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12	1579	1481	1111	1032	1071	1154	1264	1383	1372	1521	1671	1820	1969	2119
15	1519	1426	1073	998	1036	1116	1221	1336	1326	1616	1612	1756	1899	2042
18	1443	1391	1050	978	1015	1093	1195	1307	1297	1580	1576	1715	1854	1994
21	1306	1366	1035	966	1002	1079	1179	1288	1279	1557	1552	1688	1825	1961
24	1288	1349	1025	959	994	1070	1168	1276	1267	1541	1535	1670	1804	1938
27	1431	1352	1025	960	993	1068	1165	1271	1259	1531	1524	1657	1790	1922
30	1560	1360	1029	965	995	1070	1166	1270	1254	1524	1517	1648	1780	1911
33	1437	1316	1010	955	988	1064	1160	1264	1252	1520	1512	1642	1773	1903
36	1336	1285	993	947	982	1060	1157	1260	1251	1518	1509	1639	1768	1898
42	1181	1211	966	935	976	1057	1153	1256	1252	1518	1508	1636	1764	1892
48	1068	1090	941	927	973	1056	1152	1255	1257	1522	1511	1638	1765	1892
1														

Note:

Type 4 Standard Installation allows the Engineer to design when no field controls (i.e., bedding or compaction) for installation quality and at low fill heights.

Concrete Pipe – Round												
Maximum Cover												
Round Pipe (B Wall)—Type I Installation												
		Maxir	num Cov	/er (ft)								
Pipe Diameter	Class I	Class II	Class III	Class IV	Class V							
12"	11 16		22	34	45							
15"	12	16	23	34	45							
18"	12	16	23	35	45							
24"	11	16	22	34	45							
30"	11	15	22	34	45							
36"	11	15	21	33	45							
42"	10	15	21	33	45							
48"	10	14	21	32	45							

Fill Height Tables are based on: 1. γs = 120 pcf

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

	Fill Height in Feet													
Pipe Size (in)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12	1518	1369	947	817	805	838	896	964	902	1000	1098	1196	1294	1392
15	1459	1318	916	794	783	815	872	939	880	975	1070	1165	1260	1355
18	1384	1285	897	781	772	804	860	926	870	963	1057	1150	1243	1337
21	1247	1263	886	775	767	799	855	921	867	959	1051	1144	1236	1329
24	1229	1248	879	772	765	798	854	920	868	960	1051	1143	1235	1327
27	1372	1251	881	778	770	804	860	925	872	963	1055	1147	1238	1330
30	1500	1260	887	786	777	812	868	933	878	970	1061	1153	1245	1337
33	1378	1218	871	780	775	813	871	936	886	978	1070	1162	1254	1345
36	1276	1189	857	776	774	815	875	941	895	987	1079	1172	1264	1356
42	1119	1113	829	765	770	815	875	942	903	995	1087	1179	1271	1363
48	1004	992	808	758	770	817	879	946	913	1005	1097	1189	1281	1373
F 4	000	050	704	750	774	000	004	050	000	4040	4400	4004	4000	4005

Fill Height Tables are based on:

1. γs = 120 pcf

2. AASHTO HL-93 live load

3. Positive Projecting Embankment Condition -

- this gives conservative results in comparison to trench conditions
- 4. A Type 1 installation requires greater soil stiffness from the surrounding soils than the Type 2, 3, and 4 installe Therefore, field verification of soil properties and compaction levels should be performed.

D-Load (lb/ft/ft) for Type 1 Bedding

						Fill Hei	ght in Fee	et	
Pipe Size (in)	15	16	17	18	19	20	21	22	23
12	898	957	1016	1075	1134	1194	1253	1312	1371
15	876	933	990	1048	1105	1163	1220	1277	1335
18	865	921	978	1034	1091	1147	1203	1260	1316
21	861	917	973	1029	1084	1140	1196	1252	1308
24	861	917	972	1028	1084	1139	1195	1251	1306
27	864	920	975	1031	1087	1142	1198	1254	1309
30	870	925	981	1037	1093	1148	1204	1260	1316
33	877	933	989	1045	1101	1157	1213	1269	1325
36	885	941	998	1054	1110	1167	1223	1279	1335
42	890	946	1002	1058	1115	1171	1227	1283	1339
48	897	953	1010	1066	1122	1178	1234	1290	1346

Type 1 Install
23 feet max depth
Min. 1.5 Safety Factor
A-1, A-2, A-3, A-4 (FL) Soils

Fill Height Tables are based on:

1. γs = 120 pcf

2. AASHTO HL-93 live load

D-Load (lb/ft/ft) for Type 2 Bedding

9

3. Positive Projecting Embankment Condition -

this gives conservative results in comparison to trench conditions

Type 2 or 3 Install
Up to 17 feet max depth
Min. 1.5 Safety Factor
A-1 thru A-6 Soils

Fill Height in Feet										
Pipe Size (in)	15	16	17	18	19	20	21	22	23	
12	1164	1240	1317	1393	1470	1547	1623	1700	1776	
15	1139	1214	1289	1363	1438	1513	1587	1662	1737	
18	1130	1204	1278	1351	1425	1499	1573	1647	1720	
21	1130	1203	1277	1350	1424	1497	1570	1644	1717	
24	1135	1209	1282	1356	1429	1503	1576	1650	1723	
27	1135	1208	1282	1355	1428	1501	1574	1648	1721	
30	1138	1211	1284	1357	1430	1503	1576	1649	1722	
33	1143	1216	1289	1362	1435	1508	1581	1654	1727	
36	1149	1222	1295	1369	1442	1515	1588	1662	1735	
42	1152	1225	1298	1370	1443	1516	1589	1662	1735	
48	1158	1231	1303	1376	1449	1521	1594	1667	1739	

Benefits of Standard Installations

- Type 1 (e.g., FDOT)
 - Allows deep fills
 - Requires minimal embedment*
- Types 2 & 3
 - Allows max. fills at most applications
 - Allows native soils readily available at most sites
 - Reduced compaction & inspection required
 - Can still design, certify RCP for less costly install

Safety & Efficiency: How To Accomplish

- Less Time in Critical Work Zone (Trench)
 - Laborers, CEIs, Geotechnical
- **Reduce Construction Schedule**
 - □ Thicker Lifts above RCP Springline
- □ Efficient, Safer Use of CEI, Geotechnical Resources
 - **D** Focus Density Testing Where Most Important
 - Reduce In-Trench Tests as Appropriate
- Use More Economical Fill Materials and Reduce Trucking
 - In-situ Vs. Imported
 - □ Economical Soils Above RCP Springline
 - Use Alternative Standard Installation Types 2 or 3
 - Understand the design basis of soil-pipe system

Safety & Costs Improvements

- RCP Structural Properties, Design, and Standards
- Thick Lifts 20% Reduction of Time in Critical Work Zones
- More Efficient Geotechnical/Density Testing
 - Test embedment where needed
- Reduce Volume of Select Fill
- Reduce Transportation, Use In-Situ Fill Materials
- Must be justifiable in design and must be stated in specifications

Concrete Pipe Trench Detail

Concrete Pipe Installation Notes:

- 1. RCP shall be ASTM C76 Class III, unless otherwise shown in plans. Installation shall be per ASTM C1479 as modified herein.
- 2. Foundation shall be stiff to hard in-situ soil, stabilized soil, or compacted fill material.
- 3. Bedding thickness shall be D/24 inches, not less than 3 inches. Middle bedding directly beneath pipe shall be loosely placed, uncompacted embedment material.
- 4. Within roadways/traffic areas: Soil Envelope to springline shall be A-1, A-2, A-3, or A-4 material compacted to 95% std. Proctor density.
- 5. Outside of roadways: Soil Envelope to springline shall be constructed per ASTM C1479 Type 3 at minimum.
- 6. Above the springline, place concrete pipe embedment material in lifts of no more than 12 inches compacted thickness if using soil types A-3 or A-2-4 (No. 200 sieve ≤ 15%). For all other embedment material, if the contractor chooses to place concrete pipe embedment material in lifts greater than six inches but no more than 12 inches compacted thickness, then the contractor must demonstrate with a successful test section that density can be achieved.
- 7. Non-shrink grout shall be used at pipe-structure connections. Ensure placement of positive pipe bedding support.
- 8. Pipe damage or defect observations prior to install. shall be evaluated per AASHTO R73. If final CCTV inspection required, observations shall be reported and evaluated per ASTM C1840.

Thank You

Specification Development Technical Assistance & Seminars

Douglas J. Holdener, P.E. Director, FCPA (561) 352.8959 <u>dholdener@concretepipe.org</u>

